
2016-2022 COM PREHENSIVE
REPORT

BREAKING DOWN THE TOP 50 DEFI HACKS

T
A

B
L

E
 O

F
 C

O
N

T
E

N
T

S
INTRODUCTION 3

KEY FINDINGS 4

TIME DISTRIBUTION & AMOUNT LOST 5

ETHEREUM, THE MAIN TARGET BUT NOT ALONE 6

TYPE OF ATTACKS 8

 5.1 CONTRACT EXPLOITATION 10

 5.2 WALLET PROTECTION 12

 5.3 FLASH LOANS 13

 5.4 PRICE MANIPULATION 14

 5.5 ATTACKS PER CHAINS 15

TYPE OF PROTOCOLS 16

 6.1 GOVERNANCE 17

 6.2 TYPE OF PROTOCOLS PER CHAINS 18

 6.3 TYPE OF PROTOCOLS PER TYPE OF ATTACKS 19

TYPE OF FUNCTIONS 20

 7.1 TYPE OF FUNCTIONS VS CHAINS 22

 7.2 TYPE OF FUNCTIONS VS TYPES OF ATTACKS 46 23

 7.3 TYPE OF FUNCTIONS VS PROTOCOLS 24

WERE THEY AUDITED 25

 8.1 AUDITED PROTOCOLS BY CHAIN 27

 8.2 AUDITED PROTOCOLS BY TYPE OF ATTACK 28

 8.3 AUDITED PROTOCOLS BY TYPE OF PROTOCOL 29

 8.4 AUDITED PROTOCOLS BY TYPE OF FUNCTION 30

ACTIONABLE TAKEAWAYS 31

2

In this report, we intend to provide a comprehensive review of the top 50 hacks in DeFi history until
2022. We will analyze the time distribution, chain, cause, type of protocol and function (if applicable)
and whether the protocol was previously audited. Remediation and advice to avoid future losses will
also be presented.

1 https://cryptonews.com/news/web3-lost-nearly-4-billion-to-fraudsters-last-year-will-things-improve-htm

DeFi hacks are more common each day,
causing losses of millions of dollars.
It is estimated that protocols lost $3.9
Billion in 2022 1.

INTRODUCTION

//
 I

N
T

R
O

D
U

C
T

IO
N

3

• Hacks lead to major losses, and they increase every
year. The total amount lost by the top 50 largest
hacks accumulates to a total of $5,564,100,000 USD.
Furthermore, in recent years the amount seems to be
higher than in the previous one, as losses on 2022 are
about $1B higher than in 2021 and these are around
$2B higher than in 2020.

• Solana, more vulnerable than most. Even though
Ethereum is the most attacked chain, it is also the
largest of all of them. Thus, it has more protocols to
attack. However, Solana accumulates more hacks than
it should according to its TVL. Furthermore, it is also
one of those chains that accumulates more hacks in
their smart contracts despite being audited, and the
main cause of attacks is the exploitation of those
smart contracts. This could also be because of the
complexity of the language in which they are written
(Rust) in comparison with Solidity. Fantom presents
a similar case; however, the sample studied (number
of hacks) is less significant, and the difference in the
expected number of hacks by TVL is lower.

• Audits on the code and the whole ecosystem are
necessary. The majority of protocols attacked had
unaudited smart contracts. However, some attacks,
like price manipulations, are hard to find in audits if the
whole ecosystem and how the protocol interacts with
it are not considered. Furthermore, private key leakage

or theft is the second most common cause of attacks,
and is not a threat that can be detected by a smart
contract audit.

• Bad logic and incorrect or missing input validation are
the main causes of hacks in contracts.

• A failure to use multi-signature, MPC, and cold wallets
is another common issue. All of the vulnerable keys
were stored in hot wallets and only a small percentage
used multi-sig wallets.

• Flash loans can be a means of attack. Consider them
a possibility if your protocol allows swapping and
exchange of assets or uses token quorum power in
governance processes.

• Bad oracles can be dangerous. More than a quarter of
price manipulation attacks were possible thanks to the
use of a bad oracle by the protocol.

• Lending protocols, Bridges and CEXs are the most
insecure type of protocols. Those protocols accumulate
the highest number of attacks in proportion with the
total of protocols available.

• Functions used to ‘withdraw‘, ‘mint‘, ‘swap‘, ‘deposit‘
or ‘calculatePrice‘ of assets; ‘transfer Ownership';
'initialize' or upgrade contracts; and verify proofs of
actions are especially vulnerable.

After this study we present a series of key
findings to summarize all the data extracted:

KEY
FINDINGS

//
 K

E
Y

 F
IN

D
IN

G
S

//
 K

E
Y

 F
IN

D
IN

G
S

4

TIME
DISTRIBUTION &
AMOUNT LOST

DeFi protocol use and development have increased through
the years. However, the biggest losses are not distributed
in a constantly increasing way. Figure 1 shows the number
of hacks per year. The earliest one corresponds to The
DAO hack in June 2016. It can be seen that the number of
hacks or other kind of attacks is bigger in 2021 than 2022;
however, that does not indicate that the total number of
hacks have decreased, but that those were less severe.

Regarding the amount lost by these 50 top hacks, the
total amount lost is around 5,564,100,000 USD. By year,
we can see that, even if the number of hacks in 2021
was higher (Figure 1), the amount of assets lost in 2022
is about 1B higher than in 2021 (Figure 2). This indicates
that the amount lost per hack seems to be getting bigger
and bigger as time passes. It should be noted that 2018
and 2019 do not appear on the dataset. This is because
the attacks on those years were not big enough in amount
of losses to be in the top 50 ranking and not because there
were no attacks whatsoever.

//
 T

IM
E

 D
IS

T
R

IB
U

T
IO

N
 &

 A
M

O
U

N
T

 L
O

S
T

Figure 1: Distribution per year

Figure 2: Amount per year (in dollars)

5

Figure 3 shows the distribution of the different hacks per
chain. If an attack has been carried out in more than one
chain is counted in each one. It is noticeable that almost
48% are on the Ethereum network. Indeed, this chain has
been identified as the biggest by TVL. Another interesting
insight extracted on this study is that Binance Smart Chain
(BSC) was used in almost 22% of cases. It makes sense
considering that BSC is the second largest blockchain by
TVL as of Feb 2023 2. However, it should be noted that,
while the number of hacks seems to follow, to an extent,
the relation of largest chains therefore largest hacks,
there are some cases that stand out. Solana, while being

the 9th biggest chain by total TVL, behind Avalanche,
Arbitrum, Optimism, and Fantom, still surpasses them
in number of hacks, accumulating nearly 6% of them.
Bitcoin and Terra also appear in the ranking without even
being in the top 10 by TVL. On a positive note, Arbitrum,
even though is the third chain by TVL, is one of the least
attacked ones. Figure 4 shows a comparison between the
order of chains by TVL against their order by number of
attacks. If the yellow line is below the purple one, it means
that the order by number of hacks is higher than would
be expected based on TVL and, therefore, may imply more
vulnerable chains.

ETHEREUM, THE
MAIN TARGET
BUT NOT ALONE

2 https://coinmarketcap.com/chain-ranking/

//
 T

IM
E

 D
IS

T
R

IB
U

T
IO

N
 &

 A
M

O
U

N
T

 L
O

S
T

Figure 3: Distribution of attacks per chain

Figure 4: Order by TVL and number of attacks.

6

The trend seems to indicate that Ethereum is the most attacked chain, likely because
it is also the most used. However, the trend seems to indicate that, when new chains
were created and gained market share, attacks became more distributed across
Ethereum and these other chains.

Figure 5 shows the distribution of hacks by chain
per year. It should be noticed that, for example,
BSC and Solana were introduced in 2020.

//
 T

IM
E

 D
IS

T
R

IB
U

T
IO

N
 &

 A
M

O
U

N
T

 L
O

S
T

Figure 5: Distribution of hacks by chain per year 16

7

• Contract exploitation: An attack will fall into this
category when the smart contract code had a
vulnerability that was exploited by an attacker.
For example, they may have taken advantage of a
mathematical error or another common vulnerability
like re-entrancy.

• Private key leakage/theft: This attack occurs when a key
with sufficient privileges is stolen or leaked, commonly
by the use of phishing attacks or by compromising the
system in which a wallet is stored.

• Price manipulation: The attacker manipulates the
price of assets to take advantage of the protocol. This
entails making certain actions (like trades or loans)
with the objective of changing the price of an asset
to either increase or decrease its value. Changing its
value allows the attacker to generate returns in a
number of ways, such as selling the assets in greater

quantities, creating higher prices that normally
wouldn’t be possible, and even destabilizing and
damaging a protocol (for example, by leaving it with
an under-collateralized position). This can be done, for
example, by taking advantage of the protocol's use of
a bad oracle or faulty logic in the contract code. These
concepts will be further explained in Section 5.4.

• Rug pull: Sometimes the creators are the ones stealing
from their protocol. A rug pull is defined as a type
of scam that happens when the developers steal a
protocol's funds.

• Traditional: Other kinds of non-web3 specific attacks.
This could include for example script injection.

• Governance: When there is an attack on the governance
process of a protocol, for example, passing malicious
proposals.

As in the previous section, if an attack fits two
different categories, it will be counted in each one
of them. For example, a price manipulation attack
could be aided by the exploitation of a contract:

TYPE OF
ATTACKS

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

8

The second most common cause of hacks are related to the theft or leakage of a
project’s private keys (22%). The third most common is by price manipulation (19%),
followed by rug pulls done by project developers. Traditional and governance attacks
are present in lesser numbers.

It can be observed (Figure 7) that, while smart contract exploitation is still the most
common, other causes like private key theft and price manipulation are gaining
popularity, especially in recent years.

Figure 6 shows how attacks are distributed
with regard to their type. Most attacks are
possible because of contract exploitation
(nearly 47% of them).

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Figure 6: Types of attacks

Figure 7: Type of attacks per year

9

• Math bug: Math bugs are when an error in a mathematical
formula or in the calculation process occurs, such as
rounding mistakes.

• Lack/faulty input verification/validation: A contract
is exploited in this category when there is a missing or
faulty verification or validation of some input argument
for a function call, for example, not checking that two
assets supplied are not the same or the zero address.

• Re-entrancy: This is one of the most common attacks
in smart contracts. It consists of an attacker calling a
function recursively in order to damage the protocol,
often by stealing funds.

• Incorrect call permissions check: The caller’s ability to
execute the function is not properly set. For example, a
function that should be executed only by certain roles
is left open for anyone to call.

• Faulty proof verification: Especially relevant in bridges
and other cross-chain protocols, it occurs when there
is a faulty proof verification on one chain which allows
the attacker to falsify actions on the other paired
chain. For example, the signature verification algorithm
may be implemented incorrectly.

• Faulty initialization: This occurs when a contract
is left uninitialized or it is initialized with the wrong
arguments. Checking for faulty initialization is
important for proxy contracts.

• EVM based: This is the exploitation of a contract by
taking advantage of how the EVM works. For example, by
repeatedly making the contract deploy other contracts
until a certain contract address is generated.

• Bad logic: Any other kind of programming error that
results in the contract's exploitation.

Contract exploitation is the most common cause of
hacks in the current DeFi environment. However, a
contract can be exploited in different ways.

5.1 CONTRACT
EXPLOITATION

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

10

Re-entrancy is the cause in 15% of the cases while math bugs account for 12% of
them. The other types appear in lesser percentages. It should be noted that, unlike in
other studied parameters, there is no significant leading cause of contract exploits.

According to Figure 9, there does not seem to be a clear correlation between the year
and type of contract exploitation, except for the case of faulty proof verification,
which is only present in 2022, probably because of the popularization of bridges.

Figure 8 shows the distribution of types of contract
exploitation. The two most common are missing or
faulty input verification or validation and bad logic,
accumulating 26% and 23% of the cases each.

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Figure 9: Contract exploitation per year

Figure 8: Types of contract exploitation

11

In Section 5, it has been presented that the second
most common cause of attack is theft or leakage of
a project’s private keys, which allowed attackers to
exploit the protocol.

5.2 WALLET
PROTECTION

In order to provide a better understanding on how these
keys could have been exploited, two things will be analyzed.
First, if the vulnerable key was part of a multi-sig or
multi-signature. This entails that, in order to execute a
transaction, it needs to have two or more signatures.
Multi-sig provides more security than single-signature
transactions because more keys need to be compromised
in order to damage the protocol. According to our research,
only 17% of the attacked addresses were part of a multi-
sig (Figure 10).

Another security measure is to use cold wallets instead of
hot wallets. Hot wallets are connected to the internet, while
cold wallets utilize private keys kept offline. A benefit to
hot wallets is ease-of-use; however, they are less secure
than cold wallets. In order to steal from a cold wallet, the
attacker would usually require physical access to the cold
wallet and know any associated password to unlock access
to the funds. In all attacks analyzed in which private keys
have been compromised, those private keys belonged to hot
wallets (Figure 11).

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Figure 10: Multi-sig usage Figure 11: Hot wallet usage

12

A flash loan is a loan where a user borrows assets
with no upfront collateral and returns the borrowed
assets within the same blockchain transaction.

5.3 FLASH
LOANS

It is known that they can and have been used as a method
to execute attacks, but in what measure?

Among all the types of attacks in which flash loans can
be leveraged, only in 39% of them was a flash loan used
to execute the attack (Figure 12). Regarding contract
exploitation, flash loans are not used in the majority of
the cases, only in approximately 29% of them (Figure

13). However, when price manipulation attacks are being
carried out, flash loans are used in 73% of them (Figure 14).
When there is an attack against the governance protocol,
according to the studied data, flash loans are used in all
cases (Figure 15). This data shows that flash loans should
be taken into account as a possible attack vector in those
protocols that could be vulnerable to price manipulation and
governance attacks.

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Figure 12: Flash loan usage Figure 14: Flash loans usage in price manipulation attacks

Figure 13: Flash loan usage in contract exploitation attacks Figure 15: Flash loans usage in governance attacks

13

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Flash loan-based attacks seem to spike in 2021, when more than half of the attacks
used this mechanism, before falling in 2022 (Figure 16)

Figure 16: Flash loans usage through the years

14

Price manipulation attacks can take advantage of
different elements to execute the attack. For this
study, we are going to consider three categories:

5.4 PRICE
MANIPULATION

• Contract exploitation: The attacker can take
advantage of some kind of bug or failure in the contract
code to manipulate the price of assets. One example is
the way in which decimals are processed.

• Bad oracle: Oracles provide a way to access external
data sources. A bad oracle is when the party is negligent
or malicious or can be easily exploited or manipulated.
This can happen, for example, when the oracle’s data
source is compromised. Thus, having as many different
data sources as possible is desirable, because it is
more difficult to compromise all of them. A good oracle
would also protect itself from external tampering and
single points of failure via decentralization and provide
the user with incentives to report in a faithful way.

• Other causes: For example, a low supply of tokens

Figure 17 shows the distribution per type of price
manipulation attacks. The majority (64%) is possible
because of contract exploitation, while the second most
common cause is the use of a bad oracle (29%). Thus, while
the most important thing to consider when trying to avoid
this kind of attack is securing the contract code, using
a reputable oracle could prevent more than a quarter of
them.

According to Figure 18 most of the contract exploitation
and all attacks related to bad oracles happened in 2021.

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Figure 17: Price manipulation

Figure 18: Price manipulation per year

15

To see how different chains are being attacked, this
report studies the relationships between the types
of attacks defined previously and the chains studied
in Section 4.

5.5 ATTACKS
PER CHAINS

Figure 19 shows the relationship between the different types of attacks and the
different chains. It should be noted that contract exploitation seems to be the
most common cause in all of them except for Polygon, Bitcoin, and Avalanche. In
In Polygon and Bitcoin, the most common cause is private key theft or leakage.
Avalanche has been attacked equally by contract exploitation, price manipulation,
and rug pulls.

//
T

Y
P

E
 O

F
 A

T
TA

C
K

S

Figure 19: Types of attacks per chain

16

The DeFi space is a diverse ecosystem with a myriad
of protocols offering different services.

TYPE OF
PROTOCOLS

To identify which protocols are more vulnerable to attacks,
we analyzed the nature of the victims of past attacks. It
should be noted that a project can belong to more than
one category. For example, it can be a gaming protocol
and a marketplace.

Figure 20 shows which protocol types are usually targeted
in attacks. Most of the victims are lending and borrowing
platforms (approximately 20% of the total). After that,
bridges and yield farming are the second most vulnerable
protocols, accumulating almost 13% of them. CEXs 3,
currencies and Automated Market Makers accumulate
around 11%, 9% and 9% respectively. Other types of
protocols are usually less attacked. It should be noted
that it has been labeled as Services those protocols that
provide specialized services and do not comply with any of
the other categories.

Comparing the percentage of attacked protocols of each
type versus the number of instances of that protocol in
the studied sample ⁴ (Figure 21), we can see that, while

Regarding the most attacked protocol per year, it is
noticeable that, in 2021, the two most attacked types are
Lending protocols and yield farming. However, in 2022,
the most attacked protocol types are bridges, pulling far
ahead of other protocol types. This is probably due to the
growing popularity of this kind of protocol.

3 Although CEXs can be considered not to be a protocol in some instances, we will categorize them as such for the sake of data normalization and continuity

4 Retrieved from https://defillama.com/docs/api

DEXs are the most popular protocols in quantity, they are
one of the least hacked ones. Something similar happens
with yield farming protocols. Lending, Bridges and CEXs
are fewer in number in the DeFi space but have been the
target of a larger number of attacks in comparison. Thus,
it seems these protocols are more vulnerable to attacks.
Automated Market Makers and Yield aggregators seems to
also be vulnerable but to a lesser extent.

//
T

Y
P

E
 O

F
 P

R
O

T
O

C
O

L
S

Figure 20: Types of protocols

Figure 21: Types of protocols by percentage

Figure 22: Type of protocols per year

17

Are centralized organizations more vulnerable than
decentralized ones? We have analyzed the type of
governance for each attacked protocol in order to
answer that question.

6.1 GOVERNANCE

Our research shows that, while centralized organizations have been attacked more,
the difference between them and DAOs is really small (Figure 23). This seems to
mean that there is no relation between the type of governance in the protocol and
its vulnerability.

//
T

Y
P

E
 O

F
 P

R
O

T
O

C
O

L
S

Figure 23: Type of governance

18

Figure 24 shows the distribution of type of protocols
per chains. CEXs are the most attacked protocols in
well-established chains like Ethereum and Bitcoin.

6.2 TYPE OF
PROTOCOLS PER
CHAINS

On BSC, however, the most attacked type of protocol was yield farming. On Polygon,
lending protocols were the most targeted. For the other chains, the distribution of
protocols is really similar.

//
T

Y
P

E
 O

F
 P

R
O

T
O

C
O

L
S

Figure 24: Type of protocols per chains

19

Figure 25 shows the type of attacks versus
protocols. It can be seen that contract exploitation
is the most common, or one of the most common, in
the majority of the protocols.

6.3 TYPE OF
PROTOCOLS
PER TYPE OF
ATTACKS

However, in yield aggregators, yield protocols and indexes it is equal in number to
price manipulation attacks. Another significant detail is that, on CEXs, the most
common attack is private key theft or leakage.

//
T

Y
P

E
 O

F
 P

R
O

T
O

C
O

L
S

Figure 25: Type of attacks per protocols

20

When interacting with the protocol smart contracts,
different functions can be used to attack it.

TYPE OF
FUNCTIONS

//
 T

Y
P

E
 O

F
 F

U
N

C
T

IO
N

S

In order to better categorize and understand which
function types are usually targeted, the following
categories of functions have been considered based on
their functionality. It should be taken into account that we
are only considering those functions callable by the user
(public or external) on the protocol's smart contract and
that functions, especially those that are more complex,
can fall under more than one category:

• Deposit: The main purpose of the function is to deposit
assets to the protocol.

• Withdraw: In this case, the function is used to withdraw
assets from the protocol.

• Swap: The function is used to swap assets. It can call
an internal function or protocol to know how much of
an asset to swap for another.

• Mint: The function is used to mint assets. It can call an
internal function or protocol to know how much of an
asset to mint.

• Execute: The function is used to execute certain
functionality in the protocol, like proposals

• TransferOwnership: The function is used to transfer
the ownership or special privileges of a contract or
protocol.

• Initialize: The function is used to initialize the protocol.

• Upgrade: The function is used to upgrade the protocol.
Especially relevant to proxy contracts.

• CalculatePrice: The main purpose of this function is
to calculate price of assets that are involved in the
transaction.

• VerifyProof: The function's objective is to verify certain
actions/roles on the blockchain. Especially relevant on
bridges

Figure 26 shows the most commonly-attacked types
of functions. It can be seen that most of the functions
attacked have to do with the withdrawal of funds or assets
(31%). The second most common is those that mint assets
to an address (16%). After that, functions that swap assets
are most attacked (11%). Those in which functionality is
executed or that allow users to deposit funds are next
on the list by number of attacks (9%). Initialize, upgrade,
transferOwnership, calculatePrice, and verifyProof are
attacked to a lesser extent.

Figure 26: Type of functions

21

This makes sense given that mint and withdraw are the two most straightforward
methods of extracting assets out of a protocol. However, the other types of
functions could also help to accomplish this purpose. For example, transferring
contract ownership could grant special permissions in the contract and allow the
attacker to drain the protocol afterwards; or by upgrading a contract to a malicious
implementation.

Figure 27 shows the most commonly-attacked type of function per year. In recent
years, the most common is withdraw, followed by mint. It should be noted that, in
the first couple of years, the most attacked function varied between execute and
initialize. It is remarkable that those related with verify proofs are only present in
2022, probably due to the popularization of bridges.

//
 T

Y
P

E
 O

F
 F

U
N

C
T

IO
N

S

Figure 27: Type of functions per year

22

Figure 28 shows the distribution of vulnerable
functions per chain. Most attacked contracts
in Ethereum are vulnerable either because of
withdraw-like functions or executable-like ones.

7.1 TYPE OF
FUNCTIONS VS
CHAINS

In BSC, however, most of them are either withdraw or mints. Polygon has been
attacked exclusively through swap functions. It should be noted that, for most of
the other chains with a lower number of attacks, the vulnerable functions have
been those used to withdraw funds, except for Fantom, where the most commonly-
attacked function has been a deposit one.

//
 T

Y
P

E
 O

F
 F

U
N

C
T

IO
N

S

Figure 28: Type of functions per chain

23

Figure 29 highlights the types of functions used in
various types of attacks.

7.2 TYPE OF
FUNCTIONS
VS TYPES OF
ATTACKS

Most contact exploitation attacks are made by exploiting some kind of withdraw-
like function. Attacks involving private key theft also exploit this function, using the
key to withdraw funds from the protocol. The second most common way to exploit
a contract is by the use of initialize functions, followed by mint and verifyProof.
Regarding private key theft/leakage, execute and update in the protocols are
used. Governance attacks are possible by means of execute-like functions. Price
manipulation attacks, however, take advantage of withdraw as well as mint
functions and also calculatePrice and swap to a lesser extent but with not a high
difference in number. Rug pulls mostly use withdraw functions with upgrade and
swap used to a less extent.

//
 T

Y
P

E
 O

F
 F

U
N

C
T

IO
N

S

Figure 29: Type of functions versus type of attacks

24

In this section, we want to examine which types
of functions are usually used to attack each type
of protocol. As expected, Figure 30 shows that the
most common function used to attack bridges is
verifyProof.

7.3 TYPE OF
FUNCTIONS VS
PROTOCOLS

Swaps are the most-used function to attack market makers, yield aggregators,
and DEXs and are one of the most common for staking and yield farming protocols.
CalculatePrice is mostly used on lending protocols and indexes 5. Deposit seems to
be used mostly on lending protocols. Initialize is used mostly on wallets and bridges.
transferOwnership has been used mostly to attack bridges. Mint has been used in
various protocols, and it is the second most used function in bridges (together with
withdraw), one of the most used in currencies (alongside deposit, withdraw and
mint) and yield farming (with withdraw), and it is also used on yield aggregators
and lending platforms. Deposit is used only on lending platforms. Upgrade has been
used to attack lending platforms and other services.

5 Crypto indices are a financial instrument that tracks the performance of a basket of cryptocurrencies (https://www.defipulse.com/blog/crypto-indices)

//
 T

Y
P

E
 O

F
 F

U
N

C
T

IO
N

S

Figure 30: Type of functions versus type of protocols

25

Security audits of protocols' smart contracts
can help to prevent attacks. However, it is not a
guarantee, as the number of attacked protocols
that were audited is still a significant amount (28%) ,
albeit less than those that weren’t (34%) (Figure 31).

WERE THEY
AUDITED?

There are some circumstances in which the smart-contract
does not play a significant role in the attack. This is the
case for those that were subjected to traditional attacks,
private key leakage/theft and rug pulls (N/A on the figure,
38%). This number is close to the quantity of hacks for
those that did not audit their contracts. Therefore, an audit
of the protocol as a whole (e.g pen testing and holistic
review) is necessary in order to improve the security of the
protocol and mitigate risks. It should be also taken into
account that we don’t have data about those protocols in
which an audit did prevent a future attack.

For the sake of illustration, Figure 32 shows a comparison
of audited versus not audited protocols only on Web3-
native attacks.

//
 W

E
R

E
 T

H
E

Y
 A

U
D

IT
E

D

Figure 31: Audited protocols

Figure 32: Audited protocols

26

However, it should be also noted that, among those protocols that were indeed
audited, 14% of them included the exploited vulnerability on the report (Figure 33).

In 2021, there was a spike in protocols attacked that had an audit conducted
compared to those that were not audited. However, in 2020 and 2022, the number
of protocols whose smart contracts were not audited is higher than those whose
contracts were (Figure 34). This hopefully will result in a trend where audited
protocols experience fewer hacks as time passes.

//
 W

E
R

E
 T

H
E

Y
 A

U
D

IT
E

D

Figure 33: Audited protocols and percentage of vulnerabilities included on the report

Figure 34: Audited protocols per year

27

While most chains have seen more attacks on non-
audited protocols, there are exceptions, such as
Solana, Avalanche, and Fantom. However, Fantom
only has a single audited protocol.

8.1 AUDITED
PROTOCOLS BY
CHAIN

Other chains that also have a single protocol vary between not audited and N/A
(Figure 35).

//
 W

E
R

E
 T

H
E

Y
 A

U
D

IT
E

D

Figure 35: Audited protocols per chain

28

Most attacks on smart contracts (e.g., contract
exploitation, governance, and price manipulation)
involved protocols that had not been audited (Figure
36).

8.2 AUDITED
PROTOCOLS
BY TYPE OF
ATTACK

Price manipulation, however, is an exception: most of the hacks were on audited
contracts. This could mean that just auditing the code is not enough, auditing the
whole environment and how the protocol would interact with other DeFi applications
is necessary. In the cases where the smart contract is not part of the attack vector
(N/A), and an audit of the security and generation of the private keys and traditional
Web2 security audits on the whole system of the protocol (e.g. webapp audits)
should be carried out.

//
 W

E
R

E
 T

H
E

Y
 A

U
D

IT
E

D

Figure 36: Audited protocols per type of attack

29

Most protocols attacked seem not to have been
audited. Furthermore, in some cases, their attack
couldn’t have been prevented even with a smart-
contract audit (e.g., private key leakage).

8.3 AUDITED
PROTOCOLS
BY TYPE OF
PROTOCOL

However, there are a few (wallets, yield aggregators and farming, DEXs and
Staking) that were attacked even though they were audited (Figure 37). This raises
the question of why this would happen. If we remember Section 6.3, almost all of
them were also the most prone to price manipulation attacks. This kind of attack
is difficult to detect in an audit if it only centers on the current code being audited
and not the whole ecosystem.

//
 W

E
R

E
 T

H
E

Y
 A

U
D

IT
E

D

Figure 37: Audited protocols per type of protocol

30

Figure 38 shows whether each type of vulnerable
function was audited. It should be noted that, in most
cases, the majority of functions were not audited.

8.4 AUDITED
PROTOCOLS
BY TYPE OF
FUNCTION

One special case is mint functions, where the quantity of audited ones surpasses
slightly those which weren't. This is likely due to their use in price manipulation attacks.

//
 W

E
R

E
 T

H
E

Y
 A

U
D

IT
E

D

Figure 38: Audited protocols per type of function

31

• Be especially cautious when using Solana and make
sure all contracts are properly tested and audited.

• Audit your code, but don’t forget to take into account
the whole ecosystem and traditional security audits.
From a developer perspective, audit your smart-
contracts and protect the private keys and the system
in which they are contained. From a user perspective,
look for protocols that performed complete audits and
not only smart contract ones.

• Be especially careful with the logic and input validation
of the contracts. Test and review your code carefully,
considering different use cases and make sure to
perform proper input validation in each function.

• Consider using multi-signature, MPC, and cold wallets.
Using a cold wallet reduces the chance of private keys
being stolen. Furthermore, using multi-signature or MPC
wallets to perform permissioned and administrative
actions on the protocol helps minimize the chance of
major damage if one key gets compromised.

• Beware of flash loans. Program the protocol taking
them into account, for example by using snapshots to
calculate exchange prices and voting power.

• Avoid bad oracles. Use reputable, multi-source,
decentralized, and incentive-driven oracles like
Chainlink.

• Be careful with Lending protocols, Bridges and CEXs.
As a protocol owner, be careful of contract exploitation
and possible price manipulations when programming a
lending protocol. In the case of bridges, also review
the code carefully to avoid possible attacks and
secure administrative keys. If you are programming a
CEX, make sure that all keys relevant to the protocol,
especially those containing funds, are secure. As a
user, be careful with these types of protocols, make
sure they were properly audited and consider using
alternatives (like DEXs) instead.

• Pay special attention when programming functions
whose functionality coincides with those defined in
Section 8.

• Use available tools to enhance the security of likely
vulnerable functions. We have been able to categorize
all vulnerable functions into ten types based on with
their main purpose. The most vulnerable are those
with withdraw and mint capabilities. Using tools
like OpenZeppelin Sentinels or Forta bots to actively
monitor those functions once the contract is deployed
would help to minimize losses in case of an attack.
Furthermore, using https://seraph.co to protect them
could help stop the attack from occurring.

Based on the analyzed data and key findings
(Section 2), the following actions are recommended

ACTIONABLE
TAKEAWAYS //

 A
C

T
IO

N
A

B
L

E
 T

A
K

E
A

W
A

Y
S

32

// Visit Halborn.com For More

